The DOZZ formula

Rémi Rhodes ¹

UPEM

¹Joint work with: Antti Kupiainen (Univ. of Helsinki) and Vincent Vargas (ENS Ulm)
Outline

1. Gaussian multiplicative chaos
2. Liouville Conformal Field Theory (LCFT)
Plan of the talk

1. Gaussian multiplicative chaos
2. Liouville Conformal Field Theory (LCFT)
Gaussian multiplicative chaos (GMC)

Let X be a centered log-correlated Gaussian field in a (bounded) domain of \mathbb{R}^d

$$\mathbb{E}[X(x)X(y)] = \ln \frac{1}{|x - y|} + g(x, y) \quad (g \text{ bounded})$$

Theorem (Kahane, 1985)

Let X_ϵ be a reasonable regularization of X.

1. **the limit**

 $$M_\gamma(dz) := e^{\gamma X(z)} dz := \lim_{\epsilon \to 0} \epsilon^{\gamma^2/2} e^{\gamma X_\epsilon(z)} dz$$

 exists in probability in the space of Radon measures.

2. **the limit does not depend on the regularization procedure.** M_γ is different from zero if and only if $\gamma < \sqrt{2d}$.

See Berestycki’s recent article for a nice recent review and elementary approach (or Robert-Vargas, Saksman-Junnila, Shamov, R.-Vargas).
Intermittency properties

This type of measures appear in turbulence, finance, and field theory...

The parameter γ rules the intermittency strength
What happens for critical $\gamma = \sqrt{2d}$?

Theorem (Duplantier, Rhodes, Sheffield, Vargas, 2012)

Let X_ϵ be a reasonable regularization of X. Then the limit

$$M_{\gamma=\sqrt{2d}}(dz) := e^{\sqrt{2d}X(z)} \, dz := \lim_{\epsilon \to 0} (\ln \epsilon)^{1/2} \epsilon^d e^{\sqrt{2d}X_\epsilon(z)} \, dz$$

exists in probability in the space of Radon measures and is non trivial.

Question: is it possible to get integrability results for these GMC measures?
Asymptotics of the maximum

Question: What is the law of the maximum of the maximum of the GFF?

Theorem (Bramson/Ding/Zeitouni or Madaule 13’)

Take a domain D

\[
\sup_{x \in D} X_\epsilon(x) - \sqrt{2d} \ln \frac{1}{\epsilon} + \frac{3}{2\sqrt{2d}} \ln \ln \frac{1}{\epsilon} \to Y, \quad \text{in law as } \epsilon \to 0.
\]

with

\[Y \overset{\text{law}}{=} \text{Gumbel} + C + \frac{1}{\sqrt{2d}} \ln M_{\gamma=\sqrt{2d}}(D).\]

We need here a description of the law of $\ln M_{\gamma=\sqrt{2d}}(D)$.

Fyodorov-Bouchaud Formula

Let X be a Gaussian field on the unit circle

$$
\mathbb{E}[X(\theta)X(\theta')] = \ln \left| \frac{1}{e^{i\theta} - e^{i\theta'}} \right|
$$

1. the measure $M_\gamma = e^{\gamma X(z)} \, dz$ admits moments of order $p < \frac{2}{\gamma^2}$

$$
\mathbb{E}[M_\gamma(0, 2\pi)^p] < +\infty \iff p < \frac{2}{\gamma^2}.
$$

2. integer moments $p \in \mathbb{N}$ (with $p < \frac{2}{\gamma^2}$) are easily computed
Let X be a Gaussian field on the unit circle

$$\mathbb{E}[X(\theta)X(\theta')] = \ln \frac{1}{|e^{i\theta} - e^{i\theta'}|}$$

1. the measure $M_\gamma = e^{\gamma X(z)} \, dz$ admits moments of order $p < \frac{2}{\gamma^2}$

$$\mathbb{E}[M_\gamma(0, 2\pi)^p] < +\infty \iff p < \frac{2}{\gamma^2}.$$

2. integer moments $p \in \mathbb{N}$ (with $p < \frac{2}{\gamma^2}$) are easily computed

$$\mathbb{E}[M_\gamma(0, 2\pi)^p] = \int_{[0, 2\pi]^p} \mathbb{E} \prod_{1 \leq k \leq p} e^{\gamma X(\theta_k)} - \frac{\gamma^2}{2}\mathbb{E}[X(\theta_k)^2] \, d\theta_k$$

$$= \int_{[0, 2\pi]^n} \prod_{1 \leq k < p \leq n} \frac{1}{|e^{i\theta_k} - e^{i\theta_p}|^{\gamma^2}} \, d\theta_1 \ldots d\theta_n$$

$$= \frac{\Gamma(1 - p\gamma^2/2)}{\Gamma(1 - \gamma^2/2)^p}$$
Fyodorov-Bouchaud Formula

Let X be a Gaussian field on the unit circle

$$\mathbb{E}[X(\theta)X(\theta')] = \ln \frac{1}{|e^{i\theta} - e^{i\theta'}|}$$

1. The measure $M_\gamma = e^{\gamma X(z)} \, dz$ admits moments of order $p < \frac{2}{\gamma^2}$

$$\mathbb{E}[M_\gamma(0, 2\pi)^p] < +\infty \iff p < \frac{2}{\gamma^2}.$$

2. Integer moments $p \in \mathbb{N}$ (with $p < \frac{2}{\gamma^2}$) are easily computed

the Bouchaud Fyodorov proposal

$$\forall p < \frac{2}{\gamma^2}, \quad \mathbb{E}[M_\gamma(0, 2\pi)^p] = \frac{\Gamma(1 - p\gamma^2/2)}{\Gamma(1 - \gamma^2/2)^p}$$
Consequences

• $M_\gamma(0, 2\pi)$ has density over \mathbb{R}_+

\[
\frac{2}{\gamma^2} \Gamma\left(1 - \frac{\gamma^2}{2}\right) x^{-1 - \frac{\gamma^2}{2}} \exp\left(- \Gamma\left(1 - \frac{\gamma^2}{2}\right) x^{-\frac{2}{\gamma^2}}\right) dx
\]

• max du GFF= sum of two independent Gumbel laws

• work done by Guillaume Rémy
Strategy: introduce additional parameters to build an algebraic structure, inducing relations that will solve the problem. This framework is a Conformal Field Theory named Liouville theory.
Plan of the talk

1. Gaussian multiplicative chaos

2. Liouville Conformal Field Theory (LCFT)
Polyakov introduces LCFT:

Polyakov (1981): *Quantum geometry of bosonic strings*.

Conformal Field Theory to solve LCFT:

How do you construct a measure μ on \mathbb{R}? Take a potential $S : \mathbb{R} \to \mathbb{R}$ and define

$$\mu(F) := \int_{\mathbb{R}} F(x) e^{-S(x)} dx$$
How do you construct a measure μ on \mathbb{R}? Take a potential $S : \mathbb{R} \to \mathbb{R}$ and define

$$\mu(F) := \int_{\mathbb{R}} F(x)e^{-S(x)} \, dx$$

What is a functional integral? It is a measure defined on some functional space Σ by

$$\mu(F) = \int_{\Sigma} F(\phi)e^{-S(\phi)} \, D\phi$$

where $D\phi$ is the formal "Lebesgue" measure on the functional space Σ.
Quantum Liouville theory on the Riemann sphere

The Riemann sphere can be seen as the complex plane \mathbb{C} equipped with the round metric

$$g(z) = \frac{4}{(1 + |z|^2)^2}.$$

Construct the path integral

$$\int_{\Sigma} F(\phi) e^{-S_L(g,\phi)} D\phi$$

where

$$S_L(\phi) = \frac{1}{4\pi} \int_{\mathbb{C}} (|d\phi|^2_g + 2Q\phi + \mu e^{\gamma\phi}) \, dv_g,$$

$D\phi$ is the formal “Lebesgue” measure on some functional space Σ of maps $\phi : \mathbb{C} \to \mathbb{R}$ and

$$\gamma \in (0, 2), \quad \mu > 0 \quad \text{and} \quad Q = \frac{\gamma}{2} + \frac{2}{\gamma}.$$
Correlation functions

Correlation functions of the path integral

\[\int_{\Sigma} F(\phi) e^{-S_L(\phi)} D\phi \]

are defined for for \(\alpha_i \in \mathbb{R} \) and \(z_i \in \mathbb{C} \)

\[\langle \prod_{i=1}^{n} e^{\alpha_i \phi(z_i)} \rangle_{\gamma,\mu} := \int \left(\prod_{i=1}^{n} g(z_i)^{\frac{\alpha_i \Omega}{2}} e^{\alpha_i \phi(z_i)} \right) e^{-S_L(\phi)} D\phi \]
The gradient squared in the potential

\[S_L(g, \phi) = \frac{1}{4\pi} \int_C \left(|d\phi|^2_g + 2Q\phi + \mu e^{\gamma\phi} \right) dv_g, \]

has a Gaussian interpretation in terms of a log-correlated Gaussian field, called Gaussian Free Field (GFF).

Reformulating

\[\int F(\phi) \exp \left(- \frac{1}{4\pi} \int_C |d\phi|^2_g dv_g \right) D\phi = C\mathbb{E}[F(X_g)] \]

where \(X \) is a Gaussian field with covariance

\[\mathbb{E}[X_g(x)X_g(y)] = G(x, y) \]

where \(G \) is the Green function of the Laplacian with zero \(g \)-mean.
Expand any function ϕ along eigenfunctions $(e_n)_n$ of Laplacian (with eigenvalue λ_n)

$$\phi = \sum_n \phi_n e_n$$

In this parametrization $D\phi = \prod_n d\phi_n$ with $d\phi_n$ Lebesgue measure over \mathbb{R}.

Then

$$\int_C |d\phi|_g^2 d\nu_g = \sum_n \lambda_n \phi_n^2$$

hence

$$\int F(\phi) \exp \left(- \frac{1}{4\pi} \int_C |d\phi|_g^2 d\nu_g \right) D\phi = \int_{\mathbb{R}^N} F\left(\sum_n \phi_n e_n \right) \prod_n e^{-\frac{\lambda_n \phi_n^2}{2}} d\phi_n$$

$$= C \mathbb{E} \left[F\left(\sum_n \frac{\alpha_n}{\sqrt{\lambda_n}} e_n \right) \right]$$

with $(\alpha_n)_n$ i.i.d. standard Gaussian.
Path integral definition of LCFT

The existence is based on the following explicit expression:

$$\langle \prod_{i=1}^{n} e^{\alpha_i \phi(z_i)} \rangle_{\gamma,\mu} = A \left(\prod_{1 \leq j < k \leq n} \frac{1}{|z_j - z_k|^{\alpha_j \alpha_k}} \right) \mu^{-s} \Gamma(s) \mathbb{E}[Z_1^{-s}]$$

where $$s = \sum_{i=1}^{n} \frac{\alpha_i - 2Q}{\gamma}$$, A some constant (depending on the $$\alpha_i$$ and $$\gamma$$) and

$$Z_1 = \int_{\mathbb{C}} \left(\prod_{i=1}^{n} \frac{1}{|z - z_i|^{\gamma \alpha_i}} \right) g(z)^{1-\frac{\gamma}{4} \sum_{i=1}^{n} \alpha_i} e^{\gamma x_g(z)} (dz)$$

GMC measure
Pick $z_1, \ldots, z_n \in \mathbb{C}$ and $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$.

Theorem (DKRV, 2014)

The correlations exists and are non trivial if and only if:

$$\forall i, \alpha_i < Q \quad \text{and} \quad Q - \frac{\sum_{i=1}^{n} \alpha_i}{2} < \frac{2}{\gamma} \land \inf_{1 \leq i \leq n} (Q - \alpha_i) \quad (\text{PIC})$$

In particular, existence implies $n \geq 3!$
Conformal bootstrap

\[\langle \prod_{i=1}^{n} e^{\alpha_i \phi(z_i)} \rangle_{\gamma, \mu} = A \left(\prod_{1 \leq j < k \leq n} \frac{1}{|z_j - z_k|^\alpha_j \alpha_k} \right) \mu^{-s} \Gamma(s) \mathbb{E}[Z_1^{-s}] \]

where \(s = \frac{\sum_{i=1}^{n} \alpha_i - 2Q}{\gamma} \), \(A \) some constant (depending on the \(\alpha_i \) and \(\gamma \)) and

\[Z_1 = \int_{ \mathbb{C} } \left(\prod_{i=1}^{n} \frac{1}{|z - z_i|^{\gamma \alpha_i}} \right) g(z)^{1 - \frac{\gamma}{4} \sum_{i=1}^{n} \alpha_i} e^{\gamma X_g(z)} (dz) \]

Find an explicit expression for these quantities