α-deformations of an infinite class of continued fraction transformations

Tom Schmidt
Oregon State University

20 September 17
α-deformations of an infinite class of continued fraction transformations

Tom Schmidt
Oregon State University

20 September 17
1. Teaser: Zooming on entropy function
2. Planar natural extensions in the classical cases
3. New set up
4. Main results
5. Synchronization relations
6. Tree of words
7. Group identities and sketch of proofs
8. Lamination relations for 2-D
Thanks to organizers!

Joint with Kari Calta (Vassar College USA) and Cor Kraaikamp (TU Delft, the Netherlands)
Thanks to organizers!

Joint with Kari Calta (Vassar College USA) and Cor Kraaikamp (TU Delft, the Netherlands)
Teaser: Entropies of a collection of interval maps

Entropy, $n = 3$, small alpha

Synchronization for α-deformations

T. Schmidt GDR Analyse Multifractale 2017
Teaser 2: Entropies, right of a “synchronization interval”

Entropy, \(n = 3 \), right part of first \(r_1 \) branch

Synchronization for \(\alpha \)-deformations
Entropy, \(n = 3 \), right branch, zoom
Regular continued fraction map

\[x \mapsto \frac{1}{x} - \left\lfloor \frac{1}{x} \right\rfloor \]

\([0; a_1, a_2, \ldots] \mapsto [0; a_2, a_3, \ldots].\]
Figure : \((x, y) \mapsto (T(x), \frac{1}{a + y})\) with \(a = \lfloor 1/x \rfloor\).

\[
d\mu = \frac{dx \, dy}{(1 + xy)^2}
\]

Keane ... perhaps Gauss found the invariant measure in a similar way.
For $\alpha \in [0, 1]$, let

$$I_\alpha := [\alpha - 1, \alpha)$$

and

$$T_\alpha(x) := \left| \frac{1}{x} \right| - \left(\left| \frac{1}{x} \right| + 1 - \alpha \right) \quad (x \neq 0),$$

$$T_\alpha(0) := 0.$$
Any 2×2 matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ acts on reals by $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot x = \frac{ax + b}{cx + d}$.

Let $R = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. For $M \in \text{SL}_2(\mathbb{R})$ and an interval \mathbb{I}_M, let

$$T_M(x, y) := \left(M \cdot x, RMR^{-1} \cdot y \right) \text{ for } x \in \mathbb{I}_M, \ y \in \mathbb{R}.$$

Thus, $T_M(x, y) = (M \cdot x, -1/(M \cdot (-1/y)))$.

The measure μ on \mathbb{R}^2 given by

$$d\mu = \frac{dx \; dy}{(1 + xy)^2}$$

is (locally) T_M-invariant.
Any 2 × 2 matrix \(\begin{pmatrix} a & b \\ c & d \end{pmatrix} \) acts on reals by \(\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot x = \frac{ax + b}{cx + d} \).

Let \(R = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \). For \(M \in \text{SL}_2(\mathbb{R}) \) and an interval \(\mathbb{I}_M \), let

\[
\mathcal{T}_M(x, y) := \begin{pmatrix} M \cdot x, RMR^{-1} \cdot y \end{pmatrix} \quad \text{for} \ x \in \mathbb{I}_M, \ y \in \mathbb{R}.
\]

Thus, \(\mathcal{T}_M(x, y) = (M \cdot x, -1/(M \cdot (-1/y))) \).

The measure \(\mu \) on \(\mathbb{R}^2 \) given by

\[
d\mu = \frac{dx \ dy}{(1 + xy)^2}
\]

is (locally) \(\mathcal{T}_M \)-invariant.
2-D set up

- Any 2 × 2 matrix \(\begin{pmatrix} a & b \\ c & d \end{pmatrix} \) acts on reals by \(\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot x = \frac{ax + b}{cx + d} \).

- Let \(R = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \). For \(M \in \text{SL}_2(\mathbb{R}) \) and an interval \(\mathbb{I}_M \), let

\[
T_M(x, y) := \left(M \cdot x, RMR^{-1} \cdot y \right)
\]

for \(x \in \mathbb{I}_M, \ y \in \mathbb{R} \).

- Thus, \(T_M(x, y) = \left(M \cdot x, -1/(M \cdot (-1/y)) \right) \).

- The measure \(\mu \) on \(\mathbb{R}^2 \) given by

\[
d\mu = \frac{dx \ dy}{(1 + xy)^2}
\]

is (locally) \(T_M \)-invariant.
Any 2×2 matrix \[
\begin{pmatrix}
a & b \\
c & d
\end{pmatrix}
\] acts on reals by \[
\begin{pmatrix}
a & b \\
c & d
\end{pmatrix} \cdot x = \frac{ax + b}{cx + d}.
\]

Let \(R = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \). For \(M \in \text{SL}_2(\mathbb{R}) \) and an interval \(\mathbb{I}_M \), let

\[
T_M(x, y) := \left(M \cdot x, RMR^{-1} \cdot y \right)
\]

for \(x \in \mathbb{I}_M, y \in \mathbb{R} \).

Thus, \(T_M(x, y) = (M \cdot x, -1/(M \cdot (-1/y))) \).

The measure \(\mu \) on \(\mathbb{R}^2 \) given by

\[
d\mu = \frac{dx \ dy}{(1 + xy)^2}
\]

is (locally) \(T_M \)-invariant.
Any 2 × 2 matrix \(\begin{pmatrix} a & b \\ c & d \end{pmatrix} \) acts on reals by \(\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot x = \frac{ax + b}{cx + d} \).

Let \(R = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \). For \(M \in \text{SL}_2(\mathbb{R}) \) and an interval \(\mathbb{I}_M \), let

\[
T_M(x, y) := \left(M \cdot x, RMR^{-1} \cdot y \right) \quad \text{for} \quad x \in \mathbb{I}_M, \ y \in \mathbb{R}.
\]

Thus, \(T_M(x, y) = (M \cdot x, -1/(M \cdot (-1/y))) \).

The measure \(\mu \) on \(\mathbb{R}^2 \) given by

\[
d\mu = \frac{dx \ dy}{(1 + xy)^2}
\]

is (locally) \(T_M \)-invariant.
Each T_α is piecewise Möbius — there is a partition into subintervals, $I_\alpha = \bigcup_\beta K_\beta$, such that $T_\alpha(x) = M_\beta \cdot x$ for all $x \in K_\beta$.

For $x \in K_\beta$ and $y \in \mathbb{R}$ let

$$T_\alpha(x, y) = T_{M_\beta}(x, y) = \left(M_\beta \cdot x, R M_\beta R^{-1} \cdot y \right).$$

We let

$$\Omega_\alpha := \left\{ T^n_\alpha(x, 0) \mid x \in [\alpha - 1, \alpha), \ n \geq 0 \right\}.$$
Each T_α is piecewise Möbius — there is a partition into subintervals, $I_\alpha = \bigcup_\beta K_\beta$, such that $T_\alpha(x) = M_\beta \cdot x$ for all $x \in K_\beta$.

For $x \in K_\beta$ and $y \in \mathbb{R}$ let

$$T_\alpha(x, y) = T_{M_\beta}(x, y) = \left(M_\beta \cdot x, R M_\beta R^{-1} \cdot y \right).$$

We let

$$\Omega_\alpha := \left\{ T_\alpha^n(x, 0) \mid x \in [\alpha - 1, \alpha), \, n \geq 0 \right\}.$$
Each T_α is piecewise Möbius — there is a partition into subintervals, $\mathbb{I}_\alpha = \bigcup_\beta K_\beta$, such that $T_\alpha(x) = M_\beta \cdot x$ for all $x \in K_\beta$.

For $x \in K_\beta$ and $y \in \mathbb{R}$ let

$$T_\alpha(x, y) = T_{M_\beta}(x, y) = \left(M_\beta \cdot x, RM_\beta R^{-1} \cdot y \right).$$

We let

$$\Omega_\alpha := \left\{ T_\alpha^n(x, 0) \mid x \in [\alpha - 1, \alpha), \ n \geq 0 \right\}.$$
Behavior is regulated by the orbits of the endpoints of the interval \mathbb{I}_α.
Initial results about α-CF

- Nakada ’81 determined Ω_{α} for $\alpha \in [1/2, 1]$.
- Kraaikamp ’91 used induction within Ω_1 to confirm Nakada’s work.
- Moussa, Marmi, Cassa ’99 determined Ω_{α} for $\alpha \in [\sqrt{2} - 1, 1/2)$.

Let $h(T_{\alpha})$ denote the entropy of T_{α}, and let $g = (\sqrt{5} - 1)/2$ be the golden mean; with their results, one knew

$$h(T_{\alpha}) = \begin{cases} \frac{\pi^2}{6 \ln(1 + \alpha)} & \text{for } g \leq \alpha \leq 1; \\ \frac{\pi^2}{6 \ln(1 + g)} & \text{for } \sqrt{2} - 1 \leq \alpha \leq g. \end{cases}$$

- Luzzi-Marmi ’08 found $\Omega_{1/n}$ all n, made various computations and conjectures.
Nakada ’81 determined Ω_α for $\alpha \in [1/2, 1]$.

Kraaikamp ’91 used induction within Ω_1 to confirm Nakada’s work.

Moussa, Marmi, Cassa ’99 determined Ω_α for $\alpha \in [\sqrt{2} - 1, 1/2)$.

Let $h(T_\alpha)$ denote the entropy of T_α, and let $g = (\sqrt{5} - 1)/2$ be the golden mean; with their results, one knew

$$h(T_\alpha) = \begin{cases}
\frac{\pi^2}{6 \ln(1 + \alpha)} & \text{for } g \leq \alpha \leq 1; \\
\frac{\pi^2}{6 \ln(1 + g)} & \text{for } \sqrt{2} - 1 \leq \alpha \leq g.
\end{cases}$$

Luzzi-Marmi ’08 found $\Omega_{1/n}$ all n, made various computations and conjectures.
Initial results about α-CF

- Nakada '81 determined Ω_α for $\alpha \in [1/2, 1]$.
- Kraaikamp '91 used induction within Ω_1 to confirm Nakada’s work.
- Moussa, Marmi, Cassa '99 determined Ω_α for $\alpha \in [\sqrt{2} - 1, 1/2)$.

Let $h(T_\alpha)$ denote the entropy of T_α, and let $g = (\sqrt{5} - 1)/2$ be the golden mean; with their results, one knew

$$h(T_\alpha) = \begin{cases} \frac{\pi^2}{6 \ln(1 + \alpha)} & \text{for } g \leq \alpha \leq 1; \\ \frac{\pi^2}{6 \ln(1 + g)} & \text{for } \sqrt{2} - 1 \leq \alpha \leq g. \end{cases}$$

- Luzzi-Marmi '08 found $\Omega_{1/n}$ all n, made various computations and conjectures.
Nakada ’81 determined Ω_α for $\alpha \in [1/2, 1]$.
Kraaikamp ’91 used induction within Ω_1 to confirm Nakada’s work.
Moussa, Marmi, Cassa ’99 determined Ω_α for $\alpha \in [\sqrt{2} - 1, 1/2)$.

Let $h(T_\alpha)$ denote the entropy of T_α, and let $g = (\sqrt{5} - 1)/2$ be the golden mean; with their results, one knew

$$h(T_\alpha) = \begin{cases} \frac{\pi^2}{6 \ln(1 + \alpha)} & \text{for } g \leq \alpha \leq 1; \\ \frac{\pi^2}{6 \ln(1 + g)} & \text{for } \sqrt{2} - 1 \leq \alpha \leq g. \end{cases}$$

Luzzi-Marmi ’08 found $\Omega_{1/n}$ all n, made various computations and conjectures.
Later results

- Let the left and right endpoints of I_α be $l_0(\alpha)$, $r_0(\alpha)$, respectively.

Theorem (Kraaikamp-S-Steiner '12, Tiozzo et al. '12)

The set of $\alpha \in (0, 1)$ such that there exists $i = i_\alpha, j = j_\alpha$ with

$$T^i_{\alpha}(r_0(\alpha)) = T^j_{\alpha}(l_0(\alpha))$$

has complement a measure zero Cantor set.

Theorem (Kraaikamp-S-Steiner '12, Tiozzo et al. '12)

The μ measure of the planar models of the natural extensions of T_α, and the entropy of these maps, each vary continuously with α.

Theorem (Arnoux-S '13)

Each T_α is a factor of a return map to a corresponding cross-section for the geodesic flow on the unit tangent bundle of the modular surface.
Later results

- Let the left and right endpoints of \mathbb{I}_α be $l_0(\alpha)$, $r_0(\alpha)$, respectively.

Theorem (Kraaikamp-S-Steiner '12, Tiozzo et al. '12)

The set of $\alpha \in (0, 1)$ such that there exists $i = i_\alpha, j = j_\alpha$ with

$$T^i_\alpha(r_0(\alpha)) = T^j_\alpha(l_0(\alpha))$$

has complement a measure zero Cantor set.

Theorem (Kraaikamp-S-Steiner '12, Tiozzo et al. '12)

The μ measure of the planar models of the natural extensions of T_α, and the entropy of these maps, each vary continuously with α.

Theorem (Arnoux-S '13)

Each T_α is a factor of a return map to a corresponding cross-section for the geodesic flow on the unit tangent bundle of the modular surface.
Later results

- Let the left and right endpoints of \mathbb{I}_α be $\ell_0(\alpha)$, $r_0(\alpha)$, respectively.

Theorem (Kraaikamp-S-Steiner '12, Tiozzo et al. '12)

The set of $\alpha \in (0, 1)$ such that there exists $i = i_\alpha, j = j_\alpha$ with

$$T^i_\alpha(r_0(\alpha)) = T^j_\alpha(\ell_0(\alpha))$$

has complement a measure zero Cantor set.

Theorem (Kraaikamp-S-Steiner '12, Tiozzo et al. '12)

The μ measure of the planar models of the natural extensions of T_α, and the entropy of these maps, each vary continuously with α.

Theorem (Arnoux-S '13)

Each T_α is a factor of a return map to a corresponding cross-section for the geodesic flow on the unit tangent bundle of the modular surface.
Fix $n \geq 3$. Let $\nu = \nu_n = 2 \cos \pi / n$ and $t = 1 + \nu$.

Let G_n be generated by

$$A = \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} \nu & 1 \\ -1 & 0 \end{pmatrix}, \quad C = \begin{pmatrix} -1 & 1 \\ -1 & 0 \end{pmatrix},$$

(1)

and note that $C = AB$.

T. Schmidt GDR Analyse Multifractale 2017 Synchronization for α-deformations
Fix $\alpha \in [0, 1]$ and define

$$I_\alpha := I_{n, \alpha} = [(\alpha - 1)t, \alpha t).$$

Of endpoints

$$\ell_0 := \ell_0(\alpha) = (\alpha - 1)t$$

and

$$r_0 := r_0(\alpha) = \alpha t$$
Let

$$T_\alpha = T_{n,\alpha} : x \mapsto A^k C^l \cdot x,$$

(2)

- $l > 0$ is minimal such that $C^l \cdot x \notin \mathbb{I}$ Thus, rotate until exit \mathbb{I}.
- $k = -\lfloor (C^l \cdot x) / t + 1 - \alpha \rfloor$. Then, translate back into \mathbb{I}.

Let

\[T_\alpha = T_{n,\alpha} : x \mapsto A^k C^l \cdot x, \]

(2)

- \(l > 0 \) is \textit{minimal} such that \(C^l \cdot x \notin \mathbb{I} \)
 Thus, rotate until exit \(\mathbb{I} \).

- \(k = -\lfloor (C^l \cdot x)/t + 1 - \alpha \rfloor \).
 Then, translate back into \(\mathbb{I} \).
\[
x = \frac{1}{1 - \frac{1}{1 + kt - T_\alpha(x)}}.
\]
Theorem 1

For $n \geq 3$, the set of $\alpha \in (0,1)$ such that there exists $i = i_\alpha, j = j_\alpha$ with

$$T_{n,\alpha}^i(r_0(\alpha)) = T_{n,\alpha}^j(\ell_0(\alpha))$$

is of full Lebesgue measure.

Call the set of these α the synchronization set for n.
Theorem 1, more precision

For \(n \geq 3 \), the synchronization set is the union of intervals,
\[J_{k,v} = [\zeta_{k,v}, \eta_{k,v}] \] with \(k \in \mathbb{Z} \setminus \{0\} \) and \(v \in \mathcal{V} \), a tree of words defined below. The complement of the union of the \([\zeta_{k,v}, \eta_{k,v}] \) is a measure zero Cantor set.
For $k \in \mathbb{N}$ and $v \in \mathcal{V}$ (defined below), let $\mathcal{I}_{k,v} = [\zeta_{k,v}, \eta_{k,v}]$.

Theorem

Fix $n \geq 3$, $k \in \mathbb{N}$, $v \in \mathcal{V}$ and $\alpha \in (\zeta_{k,v}, \eta_{k,v})$.

There is a connected union of finitely many rectangles $\Omega_{n,\alpha}$ upon which $T_{n,\alpha}$ is bijective, up to μ-measure zero.

Furthermore, this gives the natural extension of $T_{n,\alpha}$.

Moreover, the collection of heights (top and bottoms) of the rectangles comprising $\Omega_{n,\alpha}$ depends only on (n, k, v).

Off of synchronization set, each Ω_{α} given by union of infinitely many rectangles, have continuity in that vertices converge.
For \(k \in \mathbb{N} \) and \(v \in \mathcal{V} \) (defined below), let \(J_{k,v} = [\zeta_{k,v}, \eta_{k,v}] \).

Theorem

Fix \(n \geq 3, k \in \mathbb{N}, v \in \mathcal{V} \) and \(\alpha \in (\zeta_{k,v}, \eta_{k,v}) \).

There is a connected union of finitely many rectangles \(\Omega_{n,\alpha} \) upon which \(T_{n,\alpha} \) is bijective, up to \(\mu \)-measure zero.

Furthermore, this gives the natural extension of \(T_{n,\alpha} \).

Moreover, the collection of heights (top and bottoms) of the rectangles comprising \(\Omega_{n,\alpha} \) depends only on \((n, k, v) \).

Off of synchronization set, each \(\Omega_{\alpha} \) given by union of infinitely many rectangles, have continuity in that vertices converge.
Theorem 2

For \(k \in \mathbb{N} \) and \(v \in \mathcal{V} \) (defined below), let \(\mathcal{I}_{k,v} = [\zeta_{k,v}, \eta_{k,v}] \).

Theorem

Fix \(n \geq 3, k \in \mathbb{N}, v \in \mathcal{V} \) and \(\alpha \in (\zeta_{k,v}, \eta_{k,v}) \).

There is a connected union of finitely many rectangles \(\Omega_{n,\alpha} \) upon which \(T_{n,\alpha} \) is bijective, up to \(\mu \)-measure zero.

Furthermore, this gives the natural extension of \(T_{n,\alpha} \).

Moreover, the collection of heights (top and bottoms) of the rectangles comprising \(\Omega_{n,\alpha} \) depends only on \((n, k, v)\).

Off of synchronization set, each \(\Omega_{\alpha} \) given by union of infinitely many rectangles, have continuity in that vertices converge.
Figure: The domain $\Omega_{3,0,14}$, with blocks B_i (projecting to cylinders for T_α), and their images, both denoted by i. Here $R_{k,v} = AC$ and $L_{k,v} = A^{-1}CA^{-2}CA^{-2}CA^{-1}CA^{-1}$, and α is an interior point of $J_{1,1}$.

One $\Omega_{n,\alpha}$
Cylinders

\[
(\ell_0, -1, 1, k, 1, \ldots, r_0, b, 1, n_0, \ldots)
\]

Figure: Schematic representation of cylinders for three values of \(\alpha\) (here \(n = 3\)).
Fix n. Let $S = S_n$ be given as

$$S : \bigcup_{\alpha \in [0,1]} \{r_0(\alpha)\} \times \mathbb{I}_\alpha \to \bigcup_{\alpha \in [0,1]} \{r_0(\alpha)\} \times \mathbb{I}_\alpha$$

$$(r_0(\alpha), y) \mapsto (r_0(\alpha), T_\alpha y)$$

Recall that $r_0(\alpha) = \alpha t$ and $\ell_0(\alpha) = (\alpha - 1)t = r_0(\alpha) - t$.
Fix n. Let $S = S_n$ be given as

$$S : \bigcup_{\alpha \in [0,1]} \{r_0(\alpha)\} \times \mathbb{I}_\alpha \to \bigcup_{\alpha \in [0,1]} \{r_0(\alpha)\} \times \mathbb{I}_\alpha$$

$$(r_0(\alpha), y) \mapsto (r_0(\alpha), T_\alpha y)$$

Recall that $r_0(\alpha) = \alpha t$ and $\ell_0(\alpha) = (\alpha - 1)t = r_0(\alpha) - t$.
Figure: The unions of the various cylinders for the $T_{n,\alpha}$ form cylinders for S_n. Each \mathbb{I}_α is given as a vertical fiber, with its left endpoint $\ell_0(\alpha) = \alpha t - t$ at the bottom and its right endpoint $r_0(\alpha) = \alpha t$ at the top. Here: $n = 3$.
Figure: The graph of $x \mapsto T_{3,\alpha}(x - t)$, with $x = \alpha t$, thus the values of $\ell_1(\alpha)$. In red that of $x \mapsto T_{3,\alpha}(x)$; the red curves give $r_1(\alpha)$. (Here $t = t_3 = 2$.) Gray vertical lines demarcate natural partition; to left of leftmost gray vertical line “C^2 never appears.”
Figure: Zoom in on first red branch in the “no C^2” zone. Red gives the single branch of $y = r_1(\alpha)$ while blue colors the two branches of $y = \ell_4(\alpha)$ for x-range plotted. The x-axis is shown as a dotted line.
In the previous figure, find

\[r_1 = C^{-1}A^{-1}C \cdot \ell_4 \]

holds for \(\alpha \in [\zeta, \eta) \).

For some \(u \),

\[r_2 = A^u C \cdot r_1 = A^{u-1} C \cdot \ell_4 = \ell_5. \]

This must give \(\ell_5 \) because we are in region of “no \(C^2 \)” and there is a unique translation of \(C \cdot \ell_4 \) into \(\mathbb{I}_\alpha \).
In the previous figure, find

\[r_1 = C^{-1}A^{-1}C \cdot \ell_4 \]

holds for \(\alpha \in [\zeta, \eta) \).

For some \(u \),

\[r_2 = A^u C \cdot r_1 = A^{u-1}C \cdot \ell_4 = \ell_5. \]

This must give \(\ell_5 \) because we are in region of “no \(C^2 \)” and there is a unique translation of \(C \cdot \ell_4 \) into \(\mathbb{II}_\alpha \).
A synchronization relation

- In the previous figure, find

\[r_1 = C^{-1}A^{-1}C \cdot \ell_4 \]

holds for \(\alpha \in [\zeta, \eta) \).

- For some \(u \),

\[r_2 = A^u C \cdot r_1 = A^{u-1}C \cdot \ell_4 \]

\[= \ell_5. \]

- This must give \(\ell_5 \) because we are in region of “no \(C^2 \)” and there is a unique translation of \(C \cdot \ell_4 \) into \(I_\alpha \).
A synchronization relation

In the previous figure, find

\[
 r_1 = C^{-1} A^{-1} C \cdot \ell_4
\]

holds for \(\alpha \in [\zeta, \eta)\).

For some \(u\),

\[
 r_2 = A^u C \cdot r_1 = A^{u-1} C \cdot \ell_4
\]

\[
 = \ell_5.
\]

This must give \(\ell_5\) because we are in region of “no \(C^2\)” and there is a unique translation of \(C \cdot \ell_4\) into \(\mathbb{I}_\alpha\).
Moral: synchronization occurs on intervals for which there are group elements R, L are such that

- R, L satisfy a synchronization relation and

- $r_{j-1} = R \cdot r_0(\alpha)$ and $\ell_{i-1} = L \cdot \ell_0(\alpha)$
Moral: synchronization occurs on intervals for which there are group elements R, L are such that

- R, L satisfy a synchronization relation and
- $r_{j-1} = R \cdot r_0(\alpha)$ and $\ell_{i-1} = L \cdot \ell_0(\alpha)$
Relation reveals further digits of r_0 at right endpoint

At the right endpoint of $J_{k,v}$, relation gives

$$r_{j-1} = C^{-1}A^{-1}C \cdot r_0 \quad \text{or} \quad C^{-1}AC \cdot r_{j-1} = r_0$$

Since $r_1 = A^kC \cdot r_0$,

$$r_j = r_1$$

and

$$r_j = A^{k+1}C \cdot r_{j-1}$$
Relation reveals further digits of r_0 at right endpoint

At the right endpoint of $\mathcal{J}_{k,v}$, relation gives

\[r_{j-1} = C^{-1}A_{-1}C \cdot r_0 \quad \text{or} \quad C^{-1}AC \cdot r_{j-1} = r_0 \]

Since $r_1 = A^{k}C \cdot r_0$,

\[r_j = r_1 \]

and

\[r_j = A^{k+1}C \cdot r_{j-1} \]
At the right endpoint of $J_{k,v}$, relation gives

$$r_{j-1} = C^{-1}A^{-1}C \cdot r_0$$
or $$C^{-1}AC \cdot r_{j-1} = r_0$$

Since $r_1 = A^k C \cdot r_0$,

$$r_j = r_1$$

and

$$r_j = A^{k+1}C \cdot r_{j-1}$$
Period of $r_0(\eta_{k,v})$ — only $k, k + 1$ as digits

- In parameter region where “C^2 does not appear”. Use simplified digits, for $\alpha \in \mathcal{J}_{k,v}$,

$$r_0(\alpha) = \underbrace{k^{c_1}, (k + 1)^{d_1}, \ldots, (k + 1)^{d_{s-1}}, k^{c_s}}_{d(k,v), \; v = c_1 d_1 \cdots c_{s-1} d_{s-1} c_s}, \ldots$$

- At right endpoint $\eta_{k,v}$ find periodic

$$r_0(\alpha) = d(k, v), k + 1, k^{c_1-1}, (k + 1)^{d_1}, \ldots, (k + 1)^{d_{s-1}}, k^{c_s}$$
In parameter region where "C^2 does not appear". Use simplified digits, for $\alpha \in \mathcal{J}_{k,v}$,

$$r_0(\alpha) = \underbrace{k^{c_1}, (k + 1)^{d_1}, \ldots, (k + 1)^{d_{s-1}}, k^{c_s}}_{d(k,v), v = c_1 d_1 \cdots c_{s-1} d_{s-1} c_s}, \ldots$$

At right endpoint $\eta_{k,v}$ find periodic

$$r_0(\alpha) = d(k,v), k + 1, k^{c_1-1}, (k + 1)^{d_1}, \ldots, (k + 1)^{d_{s-1}}, k^{c_s}$$
For each $s > 1$ and each word $\nu = c_1 d_1 \cdots c_{s-1} d_{s-1} c_s$, define

$$\nu' = \begin{cases}
1(c_1 - 1)d_1 c_2 \cdots c_{s-1} d_{s-1} c_s & \text{if } c_1 \neq 1, \\
(d_1 + 1)c_2 \cdots c_{s-1} d_{s-1} c_s & \text{otherwise}.
\end{cases}$$

(When $\nu = c$ with $c > 1$ then let $\nu' = 1(c - 1)$, and when $\nu = 1$ then $\nu' = 1$.)
Operators Θ_q

Set

\[\Theta_{-1}(c_1) = c_1 + 1 \]
\[\Theta_q(1) = 1q1 \text{ for } q \geq 1 \]
\[\text{For } c > 1, \text{ set } \Theta_q(c) = c[1(c - 1)]^q1c \text{ for any } q \geq 0. \]

Recursively ... Suppose \(v = \Theta_p(u) = uv'' \) for some \(p \geq 0 \) and some suffix \(v'' \). Then define for any \(q \geq 0 \)

\[\Theta_q(v) = v(v')^q v''. \]

This is a palindrome; it is shortest “self-dominant” word extending \(v(v')^q \) which is larger than \(v(v')^\infty \).

Let \(\mathcal{V} \) be the tree of all words obtained starting from \(v = 1 \).
Set

- $\Theta_{-1}(c_1) = c_1 + 1$
- $\Theta_q(1) = 1q1$ for $q \geq 1$
- For $c > 1$, set $\Theta_q(c) = c[1(c - 1)]^q1c$ for any $q \geq 0$.

Recursively ... Suppose $v = \Theta_p(u) = uv''$ for some $p \geq 0$ and some suffix v''. Then define for any $q \geq 0$

$$\Theta_q(v) = v(v')^q v''.$$

This is a palindrome; it is shortest “self-dominant” word extending $v(v')^q$ which is larger than $v(v')^\infty$.

Let V be the tree of all words obtained starting from $v = 1$.

T. Schmidt GDR Analyse Multifractale 2017 Synchronization for α-deformations
Operators Θ_q

- Set
 - $\Theta_{-1}(c_1) = c_1 + 1$
 - $\Theta_q(1) = 1q1$ for $q \geq 1$
 - For $c > 1$, set $\Theta_q(c) = c[1(c - 1)]^q1c$ for any $q \geq 0$.

- Recursively ... Suppose $v = \Theta_p(u) = uv''$ for some $p \geq 0$ and some suffix v''. Then define for any $q \geq 0$

$$\Theta_q(v) = v(v')^q v'' .$$

This is a palindrome; it is shortest “self-dominant” word extending $v(v')^q$ which is larger than $v(v')^\infty$.

- Let V be the tree of all words obtained starting from $v = 1$.

Figure: Each vertex of the directed tree \mathcal{V} has countably infinite valency. A small portion of \mathcal{V} with a hint of the derived words map, \mathcal{D}.
For $k \in \mathbb{N}, \nu \in \mathcal{V}$, let

$$I_{k,\nu} = \{ \alpha \mid r_0(\alpha) \text{ has digits } d(k, \nu) \}$$

This is partitioned

$$I_{k,\nu} = I_{k,\nu} \cup \bigcup_{q=q'}^\infty I_{k,\Theta_q(\nu)},$$

where $q' = 0$ unless $\nu = c_1$, in which case $q' = -1$.

T. Schmidt
GDR Analyse Multifractale 2017
Synchronization for α-deformations
Partitioning with the $J_{k,v}$

For $k \in \mathbb{N}, v \in \mathcal{V}$, let

$$I_{k,v} = \{ \alpha \mid r_0(\alpha) \text{ has digits } d(k,v) \}$$

This is partitioned

$$I_{k,v} = J_{k,v} \cup \bigcup_{q=q'}^\infty J_{k,\Theta_q(v)},$$

where $q' = 0$ unless $v = c_1$, in which case $q' = -1$.

Figure: A hint of the partition of the interval where $r_0(\alpha) = d(k,v) \cdots$, denoted here $I_{k,v}$.

T. Schmidt GDR Analyse Multifractale 2017

Synchronization for α-deformations
Right endpoint of α-cylinder $\mathcal{I}_{k,v}$

Figure: A non-full branch. Here $n = 3, v = 111$ and $k = 1$; we have that $\omega_{1,111}$ is determined by the fixed point of $R_{1,11}$. The labels L, R mark respectively the curves $y = L_{1,111} \cdot r_0(\alpha), y = R_{1,111} \cdot r_0(\alpha)$ where $\alpha = x/2 = x/t_{3,3}$. Red gives of $y = r_3(\alpha)$, while blue gives $y = \ell_9(\alpha)$; Magenta gives the branches of $y = r_2(\alpha)$. The left portion has $0.3582 < x < 0.3592$. The right “zooms in” to $0.35910 < x < 0.35915$. (This interval lies between the vertical gray lines in both portions.)

T. Schmidt GDR Analyse Multifractale 2017 Synchronization for α-deformations
Order on cylinders is $k > k + 1$, gives order on (shifts of) words: any c_j greater than any d_i, usual order of integers for c_j, reverse for d_i

Define full branch prefix $f(v)$ as longest prefix u of v such that u^∞ is maximal among all prefixes.

Find right endpoint of $\mathcal{I}_{k,v}$ has $r_0(\alpha)$ of digits $d(k,f(v))^\infty$.

One shows

$$f(\Theta_q(v)) = (\Theta_{q-1}(v))'.$$

Can then prove partition result.
Order on cylinders is $k > k + 1$, gives order on (shifts of) words: any c_j greater than any d_i, usual order of integers for c_j, reverse for d_i.

Define **full branch prefix** $f(v)$ as longest prefix u of v such that u^∞ is maximal among all prefixes.

Find right endpoint of $\mathcal{I}_{k,v}$ has $r_0(\alpha)$ of digits $d(k,f(v))^\infty$.

One shows

$$f(\Theta_q(v)) = \left(\Theta_{q-1}(v)\right)' .$$

Can then prove partition result.
Order on cylinders is $k > k + 1$, gives order on (shifts of) words: any c_j greater than any d_i, usual order of integers for c_j, reverse for d_i

Define **full branch prefix** $f(\nu)$ as longest prefix u of ν such that u^∞ is maximal among all prefixes.

Find right endpoint of $\mathcal{I}_{k,\nu}$ has $r_0(\alpha)$ of digits $d(k, f(\nu))^\infty$.

One shows

$$f(\Theta_q(\nu)) = \Theta_{q-1}(\nu)'$$

Can then prove partition result.
Order on cylinders is $k > k + 1$, gives order on (shifts of) words: any c_j greater than any d_i, usual order of integers for c_j, reverse for d_i.

Define full branch prefix $f(v)$ as longest prefix u of v such that u^∞ is maximal among all prefixes.

Find right endpoint of $I_{k,v}$ has $r_0(\alpha)$ of digits $d(k,f(v))^\infty$.

One shows

$$f(\Theta_q(v)) = \left(\Theta_{q-1}(v)\right)'.$$

Can then prove partition result.
Synchronization relation implies ℓ_0 digits $-1, -2$

Let $W = A^{-2}C (A^{-1}C)^{n-3} A^{-2}C(A^{-1}C)^{n-2}$.

Lemma (one step)

For $c, k \geq 1$,

$$(A^kC)^c = C^{-1}A^{-1}C (A^{-1}C)^{n-2} [W^{k-1}A^{-2}C(A^{-1}C)^{n-3}]^{c-1} W^k A^{-1}.$$

Lemma (glueing)

For $k \geq 1$,

$$WA^{-1} \cdot A^k CA^{-1}C = A^{-2}C (A^{-1}C)^{n-3} W^k A^{-2}C.$$
Let $W = A^{-2} C (A^{-1} C)^{n-3} A^{-2} C (A^{-1} C)^{n-2}$.

Lemma (one step)

For $c, k \geq 1$,

$$(A^k C)^c = C^{-1} A^{-1} C (A^{-1} C)^{n-2} \left[W^{k-1} A^{-2} C (A^{-1} C)^{n-3} \right]^{c-1} W^k A^{-1}.$$

synchr. rel.

Lemma (glueing)

For $k \geq 1$,

$$WA^{-1} \cdot A^k CA^{-1} C = A^{-2} C (A^{-1} C)^{n-3} W^k A^{-2} C.$$
Synchronization relation implies ℓ_0 digits $-1, -2$

Let $W = A^{-2} C (A^{-1} C)^{n-3} A^{-2} C (A^{-1} C)^{n-2}$.

Lemma (one step)

For $c, k \geq 1$,

$$(A^k C)^c = C^{-1} A^{-1} C (A^{-1} C)^{n-2} [W^{k-1} A^{-2} C (A^{-1} C)^{n-3}]^{c-1} W^k A^{-1}.$$

Lemma (glueing)

For $k \geq 1$,

$$W A^{-1} \cdot A^k C A^{-1} C = A^{-2} C (A^{-1} C)^{n-3} W^k A^{-2} C.$$
Outline of proof of Synchronization on full measure of α.

- Partition result holds, due to descriptions of $\zeta_{k,v}, \eta_{k,v}, \omega_{k,v}$
- Lemmas on previous slide give necessary ℓ_0 digits for synchronization on $\mathcal{J}_{k,v}$.
- Induction shows admissibility of these ℓ_0 digits. Of course, not admissible to right, but relation helps.
- Since only $-1, -2$ can use $\alpha = 0$ maps (actually with acceleration for finite measure from Calta-S), get complement of measure zero.
- Easily show no other α have synchronization (thus exact description of the complement ... follow branch of tree).
Partition result holds, due to descriptions of \(\zeta_{k,v}, \eta_{k,v}, \omega_{k,v} \).

Lemmas on previous slide give necessary \(\ell_0 \) digits for synchronization on \(J_{k,v} \).

Induction shows admissibility of these \(\ell_0 \) digits. Of course, not admissible to right, but relation helps.

Since only \(-1, -2\) can use \(\alpha = 0 \) maps (actually with acceleration for finite measure from Calta-S), get complement of measure zero.

Easily show no other \(\alpha \) have synchronization (thus exact description of the complement ... follow branch of tree).
Outline of proof of Synchronization on full measure of α.

- Partition result holds, due to descriptions of $\zeta_{k,v}, \eta_{k,v}, \omega_{k,v}$.
- Lemmas on previous slide give necessary l_0 digits for synchronization on $J_{k,v}$.
- Induction shows admissibility of these l_0 digits. Of course, not admissible to right, but relation helps.
- Since only $-1, -2$ can use $\alpha = 0$ maps (actually with acceleration for finite measure from Calta-S), get complement of measure zero.
- Easily show no other α have synchronization (thus exact description of the complement ... follow branch of tree).
Partition result holds, due to descriptions of \(\zeta_{k,v}, \eta_{k,v}, \omega_{k,v} \).

Lemmas on previous slide give necessary \(\ell_0 \) digits for synchronization on \(J_{k,v} \).

Induction shows admissibility of these \(\ell_0 \) digits. Of course, not admissible to right, but relation helps.

Since only \(-1, -2\) can use \(\alpha = 0 \) maps (actually with acceleration for finite measure from Calta-S), get complement of measure zero.

Easily show no other \(\alpha \) have synchronization (thus exact description of the complement ... follow branch of tree).
Outline of proof of Synchronization on full measure of α.

- Partition result holds, due to descriptions of $\zeta_{k,v}, \eta_{k,v}, \omega_{k,v}$.
- Lemmas on previous slide give necessary ℓ_0 digits for synchronization on $\mathcal{I}_{k,v}$.
- Induction shows admissibility of these ℓ_0 digits. Of course, not admissible to right, but relation helps.
- Since only $-1, -2$ can use $\alpha = 0$ maps (actually with acceleration for finite measure from Calta-S), get complement of measure zero.
- Easily show no other α have synchronization (thus exact description of the complement ... follow branch of tree).
One $\Omega_{n,\alpha}$, again

Figure: The domain $\Omega_{3,0.14}$, with blocks B_i (projecting to cylinders for T_α), and their images, both denoted by i. Here $R_{k,v} = AC$ and $L_{k,v} = A^{-1}CA^{-2}CA^{-2}CA^{-1}CA^{-1}$, and α is an interior point of $\mathcal{I}_{1,1}$.
A second $\Omega_{k,v}$

Figure: The domain $\Omega_{3,0.86}$. Blocks $B_{i,j}$ and their images, both denoted by (i,j). Here $L_{-k,v} = A^{-2}CA^{-1}$ and $R_{-k,v} = ACAC^2$, and α is an interior point of $\mathcal{J}_{-2,1}$. Also, hints as to the lamination ordering.
Connectedness of $\Omega_{k,v}$ requires relations on heights

\[y_1 = y_{\tau(0)} \xrightarrow{-k} y_{\tau(1)} \xrightarrow{-k} \cdots \xrightarrow{-k} y_{\tau(\iota)} = y_S \xrightarrow{-k-1} \cdots \xrightarrow{-k} y_{\tau(S-1)} \xrightarrow{-k} y_{\tau(S)} = y_{S+1} \]

\[y_{\beta(3)} \leftarrow y_{\beta(3-1)} \leftarrow \cdots \leftarrow y_{\beta(1)} \leftarrow y_{\beta(0)} = y_{-1} \]

Figure: Relations on the heights of rectangles for general $-k$, v and $\alpha \in (\eta_{-k,v}, \delta_{-k,v})$. The red paths are used to prove that lamination occurs. Horizontal arrows used to show that boundaries are sent to boundaries.
THANK YOU!