Mesure harmonique et multifractalité du SLE (I)

*Bertrand Duplantier†, Ho‡ Xuan Hieu Le‡ Thanh Binh, Michel Zinsmeister‡

**Dmitry Beliaev*, B.D., M.Z.

† Paris-Saclay/ ‡ Orléans/ * Oxford

Journées du GDR 3475
Analyse Multifractale
Porquerolles, 17 – 22 septembre 2017
Integral Means Spectrum

- Let Ω be a bounded simply connected domain containing 0 and $K = \partial \Omega$; then the harmonic measure from 0, ω^0, is the image of normalized Lebesgue measure on the unit circle by the Riemann map Φ from the unit disk onto Ω such that $f(0) = 0$. We have a similar description if $\Omega = \mathbb{C} \setminus K$ where K is a compact connected set containing at least two points: in this case ω^∞ is the image of normalized Lebesgue measure on the unit circle by a Riemann map from $\mathbb{C} \setminus \mathbb{D}$ onto Ω fixing ∞.

- The integral means of Φ are
 \[
 \mathcal{I}(r, p, \Phi) := \int_0^{2\pi} |\Phi'(re^{i\theta})|^p \, d\theta, \quad 0 < r < 1, \, (r > 1) \, p \in \mathbb{R};
 \]

- Average:
 \[
 \mathbb{E} \mathcal{I}(r, p, \Phi) := \int_0^{2\pi} \mathbb{E} \left[|\Phi'(re^{i\theta})|^p \right] \, d\theta, \quad 0 < r < 1, \, (r > 1).
 \]

- One then defines
 \[
 \beta_\Phi(p) := \limsup_{r \to 1^\pm} \frac{\log(\mathcal{I}(r, p, \Phi))}{\log(\frac{1}{|1-r|})};
 \]
Integral Means Spectrum

- Let \(\Omega \) be a bounded simply connected domain containing 0 and \(K = \partial \Omega \); then the harmonic measure from 0, \(\omega^0 \), is the image of normalized Lebesgue measure on the unit circle by the Riemann map \(\Phi \) from the unit disk onto \(\Omega \) such that \(f(0) = 0 \). We have a similar description if \(\Omega = \mathbb{C} \setminus K \) where \(K \) is a compact connected set containing at least two points: in this case \(\omega^\infty \) is the image of normalized Lebesgue measure on the unit circle by a Riemann map from \(\mathbb{C} \setminus \mathbb{D} \) onto \(\Omega \) fixing \(\infty \).

- The **integral means** of \(\Phi \) are

\[
I(r, p, \Phi) := \int_0^{2\pi} |\Phi'(re^{i\theta})|^p d\theta, \ 0 < r < 1, \ (r > 1) \ p \in \mathbb{R};
\]

- Average:

\[
\mathbb{E}I(r, p, \Phi) := \int_0^{2\pi} \mathbb{E} \left[|\Phi'(re^{i\theta})|^p \right] d\theta, \ 0 < r < 1, \ (r > 1).
\]

- One then defines

\[
\beta_\Phi(p) := \limsup_{r \to 1^{\pm}} \frac{\log(I(r, p, \Phi))}{\log\left(\frac{1}{1-r}\right)};
\]
Integral Means Spectrum

- Let Ω be a bounded simply connected domain containing 0 and $K = \partial \Omega$; then the harmonic measure from 0, ω^0, is the image of normalized Lebesgue measure on the unit circle by the Riemann map Φ from the unit disk onto Ω such that $f(0) = 0$. We have a similar description if $\Omega = \mathbb{C} \setminus K$ where K is a compact connected set containing at least two points: in this case ω^∞ is the image of normalized Lebesgue measure on the unit circle by a Riemann map from $\mathbb{C} \setminus \mathbb{D}$ onto Ω fixing ∞.

- The integral means of Φ are

$$I(r, p, \Phi) := \int_0^{2\pi} |\Phi'(re^{i\theta})|^p d\theta, \ 0 < r < 1, (r > 1) \ p \in \mathbb{R};$$

- Average:

$$E I(r, p, \Phi) := \int_0^{2\pi} E [|\Phi'(re^{i\theta})|^p] \ d\theta, \ 0 < r < 1, (r > 1).$$

- One then defines

$$\beta_\Phi(p) := \limsup_{r \to 1^\pm} \frac{\log(I(r, p, \Phi))}{\log(\frac{1}{|1-r|})};$$
Integral Means Spectrum

- Let Ω be a bounded simply connected domain containing 0 and $K = \partial \Omega$; then the harmonic measure from 0, ω^0, is the image of normalized Lebesgue measure on the unit circle by the Riemann map Φ from the unit disk onto Ω such that $f(0) = 0$. We have a similar description if $\Omega = \bar{\mathbb{C}} \setminus K$ where K is a compact connected set containing at least two points: in this case ω^∞ is the image of normalized Lebesgue measure on the unit circle by a Riemann map from $\bar{\mathbb{C}} \setminus \bar{D}$ onto Ω fixing ∞.

- The **integral means** of Φ are

$$I(r, p, \Phi) := \int_0^{2\pi} |\Phi'(re^{i\theta})|^p d\theta, \ 0 < r < 1, (r > 1) \ p \in \mathbb{R};$$

- Average:

$$\mathbb{E} I(r, p, \Phi) := \int_0^{2\pi} \mathbb{E} \left[|\Phi'(re^{i\theta})|^p \right] d\theta, \ 0 < r < 1, (r > 1).$$

- One then defines

$$\beta_\Phi(p) := \limsup_{r \to 1^\pm} \frac{\log(I(r, p, \Phi))}{\log(\frac{1}{|1-r|})}.$$
Integral Means Spectrum

-One passes from β to f by a Legendre transform,

$$\frac{1}{\alpha} f(\alpha) = \inf_p \left\{ \beta(p) - p + 1 + \frac{1}{\alpha} p \right\},$$

$$\beta(p) = \sup_\alpha \left\{ \frac{1}{\alpha} (f(\alpha) - p) \right\} + p - 1.$$
Universal Integral Means Spectrum

- $B(p) = \sup\{\beta_\Phi(p), \Phi \in S\}$.
- $B_{\text{bd}}(p) = \sup\{\beta_\Phi(p), \Phi \in S, \Phi \text{ bounded}\}$.
- Theorem (Makarov):

$$B(p) = \max\{B_{\text{bd}}(p), 3p - 1\}.$$
Universal Integral Means Spectrum

- $B(p) = \sup\{\beta_{\Phi}(p), \ \Phi \in S\}$.
- $B_{bd}(p) = \sup\{\beta_{\Phi}(p), \ \Phi \in S, \ \Phi \text{ bounded}\}$.

Theorem (Makarov):

\[B(p) = \max\{B_{bd}(p), 3p - 1\}. \]
Universal Integral Means Spectrum

- $B(p) = \sup\{\beta_{\Phi}(p), \; \Phi \in S\}$.
- $B_{bd}(p) = \sup\{\beta_{\Phi}(p), \; \Phi \in S, \; \Phi \text{ bounded}\}$.
- Theorem (Makarov):

\[B(p) = \max\{B_{bd}(p), 3p - 1\}. \]
Universal Integral Means Spectrum

- $B(p) = \sup\{\beta_\Phi(p), \Phi \in S\}$.
- $B_{bd}(p) = \sup\{\beta_\Phi(p), \Phi \in S, \Phi \text{ bounded}\}$.
- Theorem (Makarov):

$$B(p) = \max\{B_{bd}(p), 3p - 1\}.$$
Universal Integral Means Spectrum

- $B(p) = \sup\{\beta_\Phi(p), \, \Phi \in S\}$.
- $B_{bd}(p) = \sup\{\beta_\Phi(p), \, \Phi \in S, \, \Phi \text{ bounded}\}$.
- Theorem (Makarov):

\[B(p) = \max\{B_{bd}(p), 3p - 1\}. \]
Integral Means Spectrum
Integral Means Spectrum
Integral Means Spectrum
We wish to have a unified treatment of the bounded and the unbounded cases.

Idea: $\Phi \in \mathcal{S} \Rightarrow \Psi(z) = \frac{1}{\phi}(1/z)$ is bounded (near the unit circle),

$$|\psi'(z)|^p = \frac{|\phi'(1/z)|^p}{|z^2\phi(1/z)|^{2p}}.$$
We wish to have a unified treatment of the bounded and the unbounded cases.

Idea: $\Phi \in \mathcal{S} \Rightarrow \Psi(z) = \frac{1}{\Phi}(1/z)$ is bounded (near the unit circle),

\[|\psi'(z)|^p = \frac{|\Phi'(1/z)|^p}{|z^2\Phi(1/z)|^{2p}}. \]
We wish to have a unified treatment of the bounded and the unbounded cases.

Idea: $\Phi \in \mathcal{S} \Rightarrow \Psi(z) = \frac{1}{\Phi}(1/z)$ is bounded (near the unit circle),

$$|\Psi'(z)|^p = \frac{|\Phi'(1/z)|^p}{|z^2\Phi(1/z)|^{2p}}.$$
We wish to have a unified treatment of the bounded and the unbounded cases.

Idea: $\Phi \in \mathcal{S} \Rightarrow \Psi(z) = \frac{1}{\Phi}(1/z)$ is bounded (near the unit circle),

$$|\Psi'(z)|^p = \frac{|\Phi'(1/z)|^p}{|z^2 \Phi(1/z)|^{2p}}.$$
Integral Means Spectrum
Integral Means Spectrum
Generalized Integral Means Spectrum

- For \((p, q) \in \mathbb{R}^2\), we thus define the generalized integral means

\[
\mathcal{I}(r, p, q, \Phi) := \int_0^{2\pi} \frac{\left| \Phi'(re^{i\theta}) \right|^p}{\left| \Phi(re^{i\theta}) \right|^q} d\theta, \quad 0 < r < 1 \ (r > 1);
\]

- Average:

\[
\mathbb{E} \mathcal{I}(r, p, q, \Phi) := \int_0^{2\pi} \mathbb{E} \frac{\left| \Phi'(re^{i\theta}) \right|^p}{\left| \Phi(re^{i\theta}) \right|^q} d\theta, \quad 0 < r < 1 \ (r > 1).
\]

- We then define

\[
\beta_{\Phi}(p, q) := \limsup_{r \to 1^-} \frac{\log(\mathcal{I}(r, p, q, \Phi))}{\log(\frac{1}{|1-r|})};
\]

- If the limit exists,

\[
\mathcal{I}(r, p, q, \Phi) \xrightarrow{r \to 1^\pm} \frac{1}{(|1 - r|)\beta_{\Phi}(p, q)}.
\]
Generalized Integral Means Spectrum

For \((p, q) \in \mathbb{R}^2\), we thus define the generalized integral means

\[
\mathcal{I}(r, p, q, \Phi) := \int_0^{2\pi} \frac{|\Phi'(re^{i\theta})|^p}{|\Phi(re^{i\theta})|^q} d\theta, \ 0 < r < 1 \ (r > 1);
\]

Average:

\[
\mathbb{E} \mathcal{I}(r, p, q, \Phi) := \int_0^{2\pi} \mathbb{E} \frac{|\Phi'(re^{i\theta})|^p}{|\Phi(re^{i\theta})|^q} d\theta, \ 0 < r < 1 \ (r > 1).
\]

We then define

\[
\beta_{\Phi}(p, q) := \limsup_{r \to 1^-} \frac{\log(\mathcal{I}(r, p, q, \Phi))}{\log(\frac{1}{|1-r|})};
\]

If the limit exists,

\[
\mathcal{I}(r, p, q, \Phi) \overset{r \to 1^-}{\asymp} \frac{1}{(|1-r|)^{\beta_{\Phi}(p,q)}}.
\]
Generalized Integral Means Spectrum

- For \((p, q) \in \mathbb{R}^2\), we thus define the generalized integral means

\[
\mathcal{I}(r, p, q, \Phi) := \int_0^{2\pi} \frac{\Phi'(re^{i\theta})^p}{\Phi(re^{i\theta})^q} d\theta, \quad 0 < r < 1 \ (r > 1);
\]

- Average:

\[
\mathbb{E} \mathcal{I}(r, p, q, \Phi) := \int_0^{2\pi} \mathbb{E} \frac{\Phi'(re^{i\theta})^p}{\Phi(re^{i\theta})^q} d\theta, \quad 0 < r < 1 \ (r > 1).
\]

- We then define

\[
\beta_\Phi(p, q) := \limsup_{r \to 1^-} \frac{\log(\mathcal{I}(r, p, q, \Phi))}{\log(\frac{1}{|1-r|})};
\]

- If the limit exists,

\[
\mathcal{I}(r, p, q, \Phi) \overset{r \to 1^\pm}{\asymp} \frac{1}{(|1-r|)^{\beta_\Phi(p, q)}}.
\]
For \((p, q) \in \mathbb{R}^2\), we thus define the generalized integral means

\[
I(r, p, q, \Phi) := \int_0^{2\pi} \frac{|\Phi'(re^{i\theta})|^p}{|\Phi(re^{i\theta})|^q} d\theta, \ 0 < r < 1 \ (r > 1);
\]

Average:

\[
\mathbb{E} I(r, p, q, \Phi) := \int_0^{2\pi} \mathbb{E} \frac{|\Phi'(re^{i\theta})|^p}{|\Phi(re^{i\theta})|^q} d\theta, \ 0 < r < 1 \ (r > 1).
\]

We then define

\[
\beta_{\Phi}(p, q) := \limsup_{r \to 1^-} \frac{\log(I(r, p, q, \Phi))}{\log(\frac{1}{|1-r|})};
\]

If the limit exists,

\[
I(r, p, q, \Phi) \stackrel{r \to 1^\pm}{\asymp} \frac{1}{(|1 - r|)^{\beta_{\Phi}(p,q)}}.
\]
As we shall see, one can read various standard spectra in the \((p, q)\) plane:

- The usual integral means spectrum on the line \(q = 0\),
- The \textit{bounded} one on the line \(q = 2p\),
As we shall see, one can read various standard spectra in the (p, q) plane:

- The usual integral means spectrum on the line $q = 0$,
- The bounded one on the line $q = 2p$,

![Graph showing the spectrum in the (p, q) plane.](image-url)
As we shall see, one can read various standard spectra in the \((p, q)\) plane:

- The usual integral means spectrum on the line \(q = 0\),
- The **bounded** one on the line \(q = 2p\).
Universal Generalized Integral Means Spectrum

- We can similarly define a \textit{universal generalized} integral means spectrum.

\[
B(p, q) = \max \{B_{bd}(p), 3p - 2q - 1\}.
\]
Universal Generalized Integral Means Spectrum

- We can similarly define a **universal generalized** integral means spectrum.
- **Theorem (Astala, Duplantier, Z.):**

 \[B(p, q) = \max\{B_{bd}(p), 3p - 2q - 1\}. \]
Universal Generalized Integral Means Spectrum

- We can similarly define a universal generalized integral means spectrum.
- Theorem (Astala, Duplantier, Z.):

\[B(p, q) = \max \{ B_{bd}(p), 3p - 2q - 1 \} . \]
Radial Loewner Evolution

Let Δ be the complement of the closed unit disk and $\gamma : [0, +\infty[\rightarrow \mathbb{C}$ be an injective and continuous function such that $\gamma(0) \in \partial \Delta$ and $\gamma([0, +\infty[) \subset \Delta$. We define

$$\Omega_t = \Delta \setminus \gamma([0, t])$$

and f_t the Riemann map from Δ onto Ω_t such that $f_t(\infty) = \infty$ and $f_t'(\infty) > 0$. We normalize the process by assuming $f_0'(\infty) = 1$ and then, changing time if necessary, we assume $f_t'(\infty) = e^t$.

We define also $g_t = f_t^{-1}$ and $\lambda(t) = g_t(\gamma(t))$.

We have the semi-group type identity

$$f_t = f_s \circ h_{s,t}$$
Radial Loewner Evolution

Let Δ be the complement of the closed unit disk and $\gamma : [0, +\infty] \to \mathbb{C}$ be an injective and continuous function such that $\gamma(0) \in \partial \Delta$ and $\gamma([0, +\infty[) \subset \Delta$. We define

$$\Omega_t = \Delta \setminus \gamma([0, t])$$

and f_t the Riemann map from Δ onto Ω_t such that $f_t(\infty) = \infty$ and $f'_t(\infty) > 0$. We normalize the process by assuming $f'_0(\infty) = 1$ and then, changing time if necessary, we assume $f'_t(\infty) = e^t$.

We define also $g_t = f_t^{-1}$ and $\lambda(t) = g_t(\gamma(t))$.

We have the semi-group type identity

$$f_t = f_s \circ h_{s,t}$$
Radial Loewner Evolution

- Let Δ be the complement of the closed unit disk and $\gamma : [0, +\infty[\to \mathbb{C}$ be an injective and continuous function such that $\gamma(0) \in \partial \Delta$ and $\gamma(]0, +\infty[) \subset \Delta$. We define

$$\Omega_t = \Delta \setminus \gamma([0, t])$$

and f_t the Riemann map from Δ onto Ω_t such that $f_t(\infty) = \infty$ and $f'_t(\infty) > 0$. We normalize the process by assuming $f'_0(\infty) = 1$ and then, changing time if necessary, we assume $f'_t(\infty) = e^t$.

- We define also $g_t = f_t^{-1}$ and $\lambda(t) = g_t(\gamma(t))$.

- We have the semi-group type identity

$$f_t = f_s \circ h_{s,t}$$

.
Let Δ be the complement of the closed unit disk and $\gamma : [0, +\infty[\rightarrow \mathbb{C}$ be an injective and continuous function such that $\gamma(0) \in \partial \Delta$ and $\gamma([0, +\infty[) \subset \Delta$. We define

$$\Omega_t = \Delta \setminus \gamma([0, t])$$

and f_t the Riemann map from Δ onto Ω_t such that $f_t(\infty) = \infty$ and $f_t'(\infty) > 0$. We normalize the process by assuming $f_0'(\infty) = 1$ and then, changing time if necessary, we assume $f_t'(\infty) = e^t$.

We define also $g_t = f_t^{-1}$ and $\lambda(t) = g_t(\gamma(t))$.

We have the semi-group type identity

$$f_t = f_s \circ h_{s,t}$$
Radial Loewner Evolution

\[\gamma(t) \]
\[\gamma(s) \]
\[g_s \]
\[g_t \]
\[S_{s,t} \]
\[I_{s,t} \]
\[h_{s,t} \]
1) Key fact: f_t is locally Lipschitz wrt t.

2) Using the semi-group identity, Schwarz reflection theorem and Cauchy formula we find that f_t obeys the following PDE

$$\frac{\partial f_t}{\partial t}(z) = tf_t'(z) \frac{z + \lambda(t)}{z - \lambda(t)}.$$
1) Key fact: f_t is locally Lipschitz wrt t.

2) Using the semi-group identity, Schwarz reflection theorem and Cauchy formula we find that f_t obeys the following PDE

$$\frac{\partial f_t}{\partial t}(z) = tf'_t(z) \frac{z + \lambda(t)}{z - \lambda(t)}.$$
Radial Loewner Evolution

- Converse: the function $h_{s,t}(z) = f_s^{-1} \circ f_t(z)$, as a function of s, is a solution of the differential equation

$$\frac{dw}{ds} = -w \frac{\lambda(s) + w}{\lambda(s) - w}, \ w(t) = z. \quad (1)$$

- Since

$$\frac{d|w|^2}{ds} = -2|w|^2 \Re \frac{\lambda(s) + w}{\lambda(s) - w}$$

the modulus of a solution is decreasing, which implies that this equation has a solution $s \mapsto w(s; t, z)$ defined on $[0,t]$.

- By Cauchy-Lipschitz theorem, this function is injective in z and $f_t = \varphi(w(0; t, z))$ is the solution to Loewner equation such that $f_0 = \varphi$.
Radial Loewner Evolution

- Converse: the function $h_{s,t}(z) = f_s^{-1} \circ f_t(z)$, as a function of s, is a solution of the differential equation
 \[
 \frac{dw}{ds} = -w \frac{\lambda(s) + w}{\lambda(s) - w}, \quad w(t) = z. \tag{1}
 \]

- Since
 \[
 \frac{d|w|^2}{ds} = -2|w|^2 \Re \frac{\lambda(s) + w}{\lambda(s) - w}
 \]
 the modulus of a solution is decreasing, which implies that this equation has a solution $s \mapsto w(s; t, z)$ defined on $[0, t]$.

- By Cauchy-Lipschitz theorem, this function is injective in z and $f_t = \varphi(w(0; t, z))$ is the solution to Loewner equation such that $f_0 = \varphi$.
Radial Loewner Evolution

- Converse: the function \(h_{s,t}(z) = f_s^{-1} \circ f_t(z) \), as a function of \(s \), is a solution of the differential equation

\[
\frac{dw}{ds} = -w \frac{\lambda(s) + w}{\lambda(s) - w}, \quad w(t) = z.
\]

(1)

- Since

\[
\frac{d|w|^2}{ds} = -2|w|^2 \Re \frac{\lambda(s) + w}{\lambda(s) - w}
\]

the modulus of a solution is decreasing, which implies that this equation has a solution \(s \mapsto w(s; t, z) \) defined on \([0,t]\).

- By Cauchy-Lipschitz theorem, this function is injective in \(z \) and \(f_t = \varphi(w(0; t, z)) \) is the solution to Loewner equation such that \(f_0 = \varphi \).
Radial Loewner Evolution
Whole-plane SLE

\[\lambda(t) \]

\[z_t = f_t^{-1}(\infty) \]

\[\gamma(t) = f_t(\lambda(t)) \]

\[\gamma(0) = f_0(1) \]

\[f_t(0) = 0 \]
Chordal SLE

\[w = f_t(z) \]

\[f_t(x') \rightarrow f_t(x) \]

\[x' \quad 0 \quad x \]

\[0 \quad \eta_t \]
Phases for SLE
Physical interpretation
The Brownian Frontier
Integrable red parabola

Let f be a time 0 whole-plane (inner) SLE_κ, and $(p, q) \in \mathbb{R}^2$.

$$F(z) := \mathbb{E} \left(f'(z)^p \left(\frac{Z}{f(z)} \right)^{\frac{q}{2}} \right), \quad G(z, \bar{z}) := \mathbb{E} \left(|f'(z)|^p \left| \frac{Z}{f(z)} \right|^q \right).$$

The red parabola has for parameterization,

$$p(\gamma) = (2 + \frac{\kappa}{2})\gamma - \frac{\kappa}{2}\gamma^2, \quad \gamma \in \mathbb{R},$$

$$q(\gamma) = (3 + \frac{\kappa}{2})\gamma - \kappa\gamma^2.$$

Theorem: If $p = p(\gamma)$ and $q = q(\gamma)$, one has

$$F(z) = (1 - z)^\gamma, \quad G(z, \bar{z}) = \frac{(1 - z)^\gamma(1 - \bar{z})^\gamma}{(1 - z\bar{z})^{\frac{\kappa\gamma^2}{2}}}.$$
Integrable red parabola

Let f be a time 0 whole-plane (inner) SLE$_\kappa$, and $(p, q) \in \mathbb{R}^2$.

$$F(z) := \mathbb{E} \left(f'(z)^{\frac{p}{2}} \left(\frac{z}{f(z)} \right)^{\frac{q}{2}} \right), \quad G(z, \bar{z}) := \mathbb{E} \left(|f'(z)|^p \left| \frac{z}{f(z)} \right|^q \right).$$

The red parabola has for parameterization,

$$p(\gamma) = (2 + \frac{\kappa}{2})\gamma - \frac{\kappa}{2}\gamma^2, \quad \gamma \in \mathbb{R},$$

$$q(\gamma) = (3 + \frac{\kappa}{2})\gamma - \kappa\gamma^2.$$

Theorem: If $p = p(\gamma)$ and $q = q(\gamma)$, one has

$$F(z) = (1 - z)^\gamma, \quad G(z, \bar{z}) = \frac{(1 - z)^\gamma (1 - \bar{z})^\gamma}{(1 - z\bar{z})^{\kappa\gamma^2/2}}.$$
Integrable red parabola

Let f be a time 0 whole-plane (inner) SLE$_{\kappa}$, and $(p, q) \in \mathbb{R}^2$.

$$F(z) := \mathbb{E} \left(f'(z)^\frac{p}{2} \left(\frac{z}{f(z)} \right)^\frac{q}{2} \right), \quad G(z, \bar{z}) := \mathbb{E} \left(|f'(z)|^p \left| \frac{z}{f(z)} \right|^q \right).$$

The red parabola has for parameterization,

$$p(\gamma) = (2 + \frac{\kappa}{2})\gamma - \frac{\kappa}{2}\gamma^2, \quad \gamma \in \mathbb{R},$$
$$q(\gamma) = (3 + \frac{\kappa}{2})\gamma - \kappa\gamma^2.$$

Theorem: If $p = p(\gamma)$ and $q = q(\gamma)$, one has

$$F(z) = (1 - z)^\gamma, \quad G(z, \bar{z}) = \frac{(1 - z)^\gamma(1 - \bar{z})^\gamma}{(1 - z\bar{z})^{\kappa\frac{\gamma^2}{2}}}.$$
The starting point is to consider the radial SLE_κ, that is the solution to the ODE

$$\partial_t g_t(z) = g_t(z) \frac{\lambda(t) + g_t(z)}{\lambda(t) - g_t(z)}, \; z \in \mathbb{D},$$

with the initial condition $g_0(z) = z$, and where $\lambda(t) = e^{i\sqrt{\kappa} B_t}$.

The (conjugate, inverse) radial SLE process \tilde{f}_t is defined for $t \geq 0$ as

$$\tilde{f}_t(z) := g_t^{-1}(z \lambda(t))/\lambda(t). \quad (2)$$
Idea of proof (for $p = q = 1$)

- The starting point is to consider the radial SLE_κ, that is the solution to the ODE

$$\partial_t g_t(z) = g_t(z) \frac{\lambda(t) + g_t(z)}{\lambda(t) - g_t(z)}, \quad z \in \mathbb{D},$$

with the initial condition $g_0(z) = z$, and where $\lambda(t) = e^{i \sqrt{\kappa} B_t}$.

- The (conjugate, inverse) radial SLE process \tilde{f}_t is defined for $t \geq 0$ as

$$\tilde{f}_t(z) := g_t^{-1}(z \lambda(t))/\lambda(t). \quad (2)$$
Idea of proof (for $p = q = 1$)

- The starting point is to consider the radial SLE_κ, that is the solution to the ODE

$$
\partial_t g_t(z) = g_t(z) \frac{\lambda(t) + g_t(z)}{\lambda(t) - g_t(z)}, \quad z \in \mathbb{D},
$$

with the initial condition $g_0(z) = z$, and where $\lambda(t) = e^{i \sqrt{\kappa} B_t}$.

- The (conjugate, inverse) radial SLE process \tilde{f}_t is defined for $t \geq 0$ as

$$
\tilde{f}_t(z) := g_t^{-1}(z \lambda(t))/\lambda(t).
$$
Idea of proof (for $p = q = 1$)

$\tilde{f}_s(z) = \hat{g}_{-s}(z),$

where $\hat{g}_t(z) = g_{s+t}(g_s^{-1}(z\lambda(s))))/\lambda(s)$ is shown to be a radial SLE.

$\tilde{f}_t(z) = \lambda(s)\tilde{f}_{t-s}(\tilde{f}_s(z)/\lambda(s)).$

The limit in law, $\lim_{t \to +\infty} e^t \tilde{f}_t(z)$, exists, and has the same law as the (time zero) interior whole-plane random map $f_0(z)$.

$F(z) := \mathbb{E} \left(\frac{f'(z)}{f(z)} \right), \quad (3)$

$\tilde{F}(z, t) := \mathbb{E} \left(\frac{\tilde{f}'_t(z)}{\tilde{f}_t(z)} \right). \quad (4)$

$\lim_{t \to \infty} \tilde{F}(z, t) = F(z).$
Idea of proof (for $p = q = 1$)

\[\tilde{f}_s(z) = \hat{g}_{-s}(z), \]

where $\hat{g}_t(z) = g_{s+t}(g_s^{-1}(z\lambda(s))))/\lambda(s)$ is shown to be a radial SLE.

\[\tilde{f}_t(z) = \lambda(s)\tilde{f}_{t-s}(\tilde{f}_s(z)/\lambda(s)). \]

The limit in law, $\lim_{t \to +\infty} e^t \tilde{f}_t(z)$, exists, and has the same law as the (time zero) interior whole-plane random map $f_0(z)$.

\[F(z) := \mathbb{E} \left(z \frac{f'(z)}{f(z)} \right), \quad (3) \]

\[\tilde{F}(z, t) := \mathbb{E} \left(z \frac{\tilde{f}'_t(z)}{\tilde{f}_t(z)} \right). \quad (4) \]

$\lim_{t \to \infty} \tilde{F}(z, t) = F(z).$
Idea of proof (for $p = q = 1$)

$\tilde{f}_s(z) = \hat{g}_s(z)$,
where $\hat{g}_t(z) = g_{s+t}(g^{-1}_s(z\lambda(s))))/\lambda(s)$ is shown to be a radial SLE.

$\tilde{f}_t(z) = \lambda(s)\tilde{f}_{t-s}(\tilde{f}_s(z)/\lambda(s))$.

The limit in law, $\lim_{t \to +\infty} e^t \tilde{f}_t(z)$, exists, and has the same law as the (time zero) interior whole-plane random map $f_0(z)$.

$F(z) := \mathbb{E} \left(z \frac{f'(z)}{f(z)} \right)$, \quad (3)
\[\tilde{F}(z, t) := \mathbb{E} \left(z \frac{\tilde{f}'_t(z)}{\tilde{f}_t(z)} \right). \quad (4) \]

$\lim_{t \to \infty} \tilde{F}(z, t) = F(z)$.
Idea of proof (for $p = q = 1$)

$\tilde{f}_s(z) = \hat{g}_{-s}(z),
$ where $\hat{g}_t(z) = g_{s+t}(g_s^{-1}(z\lambda(s))))/\lambda(s)$ is shown to be a radial SLE.

$\tilde{f}_t(z) = \lambda(s)\tilde{f}_{t-s}(\tilde{f}_s(z)/\lambda(s)).$

The limit in law, $\lim_{t \to +\infty} e^t \tilde{f}_t(z)$, exists, and has the same law as the (time zero) interior whole-plane random map $f_0(z)$.

$F(z) := \mathbb{E} \left(z \frac{f'(z)}{f(z)} \right),
$ (3)

$\tilde{F}(z, t) := \mathbb{E} \left(z \frac{\tilde{f}'_t(z)}{\tilde{f}_t(z)} \right).
$ (4)

$\lim_{t \to \infty} \tilde{F}(z, t) = F(z).$
Idea of proof (for $p = q = 1$)

\[\tilde{f}_s(z) = \hat{g}_{-s}(z), \]

where $\hat{g}_t(z) = g_{s+t}(g_s^{-1}(z\lambda(s))))/\lambda(s)$ is shown to be a radial SLE.

\[\tilde{f}_t(z) = \lambda(s)\tilde{f}_{t-s}(\tilde{f}_s(z)/\lambda(s)). \]

The limit in law, $\lim_{t \to +\infty} e^t \tilde{f}_t(z)$, exists, and has the same law as the (time zero) interior whole-plane random map $f_0(z)$.

\[F(z) := \mathbb{E} \left(z \frac{f'(z)}{f(z)} \right), \quad (3) \]
\[\tilde{F}(z, t) := \mathbb{E} \left(z \frac{\tilde{f}'_t(z)}{\tilde{f}_t(z)} \right). \quad (4) \]

\[\lim_{t \to \infty} \tilde{F}(z, t) = F(z). \]
Idea of proof (for $p = q = 1$)

$\tilde{f}_s(z) = \hat{g}_{-s}(z),$

where $\hat{g}_t(z) = g_{s+t}(g_s^{-1}(z\lambda(s))))/\lambda(s)$ is shown to be a radial SLE.

$\tilde{f}_t(z) = \lambda(s)\tilde{f}_{t-s}(\tilde{f}_s(z)/\lambda(s)).$

The limit in law, $\lim_{t \to +\infty} e^t \tilde{f}_t(z)$, exists, and has the same law as the (time zero) interior whole-plane random map $f_0(z)$.

$F(z) := \mathbb{E} \left(z \frac{f'(z)}{f(z)} \right)$, \hspace{1cm} (3)

$\tilde{F}(z, t) := \mathbb{E} \left(z \frac{\tilde{f}'_t(z)}{\tilde{f}_t(z)} \right)$. \hspace{1cm} (4)

$\lim_{t \to \infty} \tilde{F}(z, t) = F(z)$.
Idea of proof \((p = q = 1)\)

\(\Rightarrow\) For \(s \leq t\), define \(\mathcal{M}_s := \mathbb{E}\left(\frac{\tilde{f}'_t(z)}{\tilde{f}_t(z)} | \mathcal{F}_s\right)\), where \(\mathcal{F}_s\) is the \(\sigma\)-algebra generated by \(\{B_u, u \leq s\}\). \((\mathcal{M}_s)_{s \geq 0}\) is by construction a martingale. Because of the Markov property of SLE, we have

\[
\mathcal{M}_s = \mathbb{E}\left(\frac{\tilde{f}'_t(z)}{\tilde{f}_t(z)} | \mathcal{F}_s\right) = \mathbb{E}\left(\frac{\tilde{f}'_s(z)}{\lambda(s)} \frac{\tilde{f}'_{t-s}(\tilde{f}_s(z)/\lambda(s))}{\tilde{f}'_{t-s}(\tilde{f}_s(z)/\lambda(s))} | \mathcal{F}_s\right)
\]

\[
= \frac{\tilde{f}'_s(z)}{\lambda(s)} \mathbb{E}\left(\frac{\tilde{f}'_{t-s}(\tilde{f}_s(z)/\lambda(s))}{\tilde{f}'_{t-s}(\tilde{f}_s(z)/\lambda(s))} | \mathcal{F}_s\right)
\]

\[
= \frac{\tilde{f}'_s(z)}{\tilde{f}_s(z)} \tilde{F}(z_s, \tau),
\]

\(\Rightarrow\) where \(z_s := \tilde{f}_s(z)/\lambda(s)\), and \(\tau := t - s\).
Idea of proof \((p = q = 1)\)

- For \(s \leq t\), define \(\mathcal{M}_s := \mathbb{E}\left(\frac{\tilde{f}'_t(z)}{\tilde{f}_t(z)} \mid \mathcal{F}_s\right)\), where \(\mathcal{F}_s\) is the \(\sigma\)-algebra generated by \(\{B_u, \ u \leq s\}\). \((\mathcal{M}_s)_{s \geq 0}\) is by construction a martingale. Because of the Markov property of SLE, we have

\[
\mathcal{M}_s = \mathbb{E}\left(\frac{\tilde{f}'_t(z)}{\tilde{f}_t(z)} \mid \mathcal{F}_s\right) = \mathbb{E}\left(\frac{\tilde{f}'_s(z)}{\lambda(s)} \frac{\tilde{f}'_{t-s}(\tilde{f}_s(z)/\lambda(s))}{\tilde{f}'_{t-s}(\tilde{f}_s(z)/\lambda(s))} \mid \mathcal{F}_s\right)
\]

\[
= \frac{\tilde{f}'_s(z)}{\lambda(s)} \mathbb{E}\left(\frac{\tilde{f}'_{t-s}(\tilde{f}_s(z)/\lambda(s))}{\tilde{f}'_{t-s}(\tilde{f}_s(z)/\lambda(s))} \mid \mathcal{F}_s\right)
\]

\[
= \frac{\tilde{f}'_s(z)}{\tilde{f}_s(z)} \tilde{F}(Z_s, \tau),
\]

where \(z_s := \tilde{f}_s(z)/\lambda(s)\), and \(\tau := t - s\).
Idea of proof ($p = q = 1$)

- For $s \leq t$, define $\mathcal{M}_s := \mathbb{E}\left(\frac{\tilde{f}'_t(z)}{\tilde{f}_t(z)} | \mathcal{F}_s \right)$, where \mathcal{F}_s is the σ-algebra generated by $\{B_u, \ u \leq s\}$. $(\mathcal{M}_s)_{s \geq 0}$ is by construction a martingale. Because of the Markov property of SLE, we have

\[
\mathcal{M}_s = \mathbb{E}\left(\frac{\tilde{f}'_t(z)}{\tilde{f}_t(z)} | \mathcal{F}_s \right) = \mathbb{E}\left(\frac{\tilde{f}'_s(z)}{\lambda(s)} \frac{\tilde{f}'_{t-s}(\tilde{f}_s(z)/\lambda(s))}{\tilde{f}_{t-s}(\tilde{f}_s(z)/\lambda(s))} | \mathcal{F}_s \right)
\]

\[
= \frac{\tilde{f}'_s(z)}{\lambda(s)} \mathbb{E}\left(\frac{\tilde{f}'_{t-s}(\tilde{f}_s(z)/\lambda(s))}{\tilde{f}_{t-s}(\tilde{f}_s(z)/\lambda(s))} | \mathcal{F}_s \right)
\]

\[
= \frac{\tilde{f}'_s(z)}{\tilde{f}_s(z)} \tilde{F}(Z_s, \tau),
\]

- where $z_s := \tilde{f}_s(z)/\lambda(s)$, and $\tau := t - s$.
Idea of proof \((p = q = 1) \)

\[
\partial_s \log \tilde{f}'_s = \frac{\partial_z \left[\tilde{f}_s \frac{\tilde{f}_s + \lambda(s)}{\tilde{f}_s - \lambda(s)} \right]}{\tilde{f}'_s} = \frac{\tilde{f}_s + \lambda(s)}{\tilde{f}_s - \lambda(s)} - \frac{2\lambda(s)\tilde{f}_s}{(\tilde{f}_s - \lambda(s))^2} \tag{5}
\]

\[= 1 - \frac{2}{(1 - z_s)^2},\]

\[
\partial_s \log \tilde{f}_s = \frac{\partial_s \tilde{f}}{\tilde{f}_s} = \frac{z_s + 1}{z_s - 1}, \tag{6}
\]

\[
dz_s = z_s \left[\frac{z_s + 1}{z_s - 1} - \frac{\kappa}{2} \right] ds - iz_s \sqrt{\kappa} dB_s. \tag{7}
\]

The coefficient of the \(ds \)-drift term of the Itô derivative of \(M_s \) is obtained from the above as,

\[
\tilde{f}'_s(z) \left[-\frac{2z_s}{(1 - z_s)^2} + z_s \left(\frac{z_s + 1}{z_s - 1} - \frac{\kappa}{2} \right) \partial_z - \partial_\tau - \frac{\kappa}{2} z_s^2 \partial_z^2 \right] \tilde{G}(z_s, \tau), \tag{8}
\]
Idea of proof \((p = q = 1)\)
\[
\begin{align*}
\partial_s \log \tilde{f}'_s &= \frac{\partial_z \left[\tilde{f}_s \frac{\tilde{f}_s + \lambda(s)}{\tilde{f}_s - \lambda(s)} \right]}{\tilde{f}'_s} = \frac{\tilde{f}_s + \lambda(s)}{\tilde{f}_s - \lambda(s)} - \frac{2\lambda(s)\tilde{f}_s}{(\tilde{f}_s - \lambda(s))^2} \quad (5) \\
&= 1 - \frac{2}{(1 - z_s)^2},
\end{align*}
\]
\[
\begin{align*}
\partial_s \log \tilde{f}_s &= \frac{\partial_s \tilde{f}_s}{\tilde{f}_s} = \frac{z_s + 1}{z_s - 1}, \\
\quad dz_s &= z_s \left[\frac{z_s + 1}{z_s - 1} - \frac{\kappa}{2} \right] ds - iz_s \sqrt{\kappa} dB_s. \quad (7)
\end{align*}
\]

The coefficient of the \(ds\)-drift term of the Itô derivative of \(\mathcal{M}_s\) is obtained from the above as,
\[
\begin{align*}
\frac{\tilde{f}'_s(z)}{\tilde{f}_s(z)} \left[-\frac{2z_s}{(1 - z_s)^2} + z_s \left(\frac{z_s + 1}{z_s - 1} - \frac{\kappa}{2} \right) \partial_z - \partial_\tau - \frac{\kappa}{2} z_s^2 \partial^2_z \right] G(z_s, \tau),
\end{align*}
\]
Idea of proof (for $p = q = 1$)

\[
-\frac{2z}{(1 - z)^2} + z \left(\frac{z + 1}{z - 1} \right) \partial_z - \frac{\kappa}{2} (z \partial_z)^2 \right] (F)(z) = 0. \tag{9}
\]

In the general case we obtain with the same method:

\[
\left[-\frac{\kappa}{2} (z \partial_z)^2 - \frac{1 + z}{1 - z} z \partial_z - \frac{p}{(1 - z)^2} + \frac{q}{1 - z} + p - q \right] (F)(z) = 0. \tag{10}
\]
Idea of proof (for $p = q = 1$)

\[
\left[-\frac{2z}{(1 - z)^2} + z \left(\frac{z + 1}{z - 1}\right) \partial_z - \frac{\kappa}{2}(z \partial_z)^2\right] (F)(z) = 0. \quad (9)
\]

In the general case we obtain with the same method:

\[
\left[-\frac{\kappa}{2}(z \partial_z)^2 - \frac{1 + z}{1 - z} z \partial_z - \frac{p}{(1 - z)^2} + \frac{q}{1 - z} + p - q\right] (F)(z) = 0. \quad (10)
\]
The red parabola: idea of proof

Using Itô calculus, we derive a partial differential equation satisfied by G,

$$
\mathcal{P}(D)[G(z, \bar{z})] = \left[-\frac{\kappa}{2}(z \partial_z - \bar{z} \partial_{\bar{z}})^2 - \frac{1 + z}{1 - z} z \partial_z - \frac{1 + \bar{z}}{1 - \bar{z}} \bar{z} \partial_{\bar{z}} - \frac{p}{(1 - z)^2} - \frac{p}{(1 - \bar{z})^2} + \frac{q}{1 - z} + \frac{q}{1 - \bar{z}} + 2(p - q) \right] G(z, \bar{z}) = 0.
$$
The red parabola: idea of proof

- Set $\varphi_\gamma(z) := (1 - z)^\gamma$:
 - $\mathcal{P}(\partial_z)[\varphi_\gamma] = A(p, q, \gamma)\varphi_\gamma + B(q, \gamma)\varphi_{\gamma-1} + C(p, \gamma)\varphi_{\gamma-2}$, with A, B and C involving monomials in p, q, in addition to quadratic polynomials in γ.
 - $A + B + C \equiv 0$.
 - The equations, $A = C = 0$, exactly correspond to (p, q) on the red parabola, and directly yield its parameterization in terms of γ.
 - If $F = \varphi_\gamma$, then we seek G as
 \[
 G(z, \bar{z}) = \varphi_\gamma(z)\varphi_\gamma(z) P(z\bar{z}),
 \]
 and writing $\mathcal{P}(D)[G] = 0$ leads to a simple differential equation for P.
The red parabola: idea of proof

- Set $\varphi_\gamma(z) := (1 - z)^\gamma$:

- $\mathcal{P}(\partial_z)[\varphi_\gamma] = A(p, q, \gamma)\varphi_\gamma + B(q, \gamma)\varphi_{\gamma-1} + C(p, \gamma)\varphi_{\gamma-2}$, with A, B and C involving monomials in p, q, in addition to quadratic polynomials in γ.

- $A + B + C \equiv 0$.

- The equations, $A = C = 0$, exactly correspond to (p, q) on the red parabola, and directly yield its parameterization in terms of γ.

- If $F = \varphi_\gamma$, then we seek G as

$$G(z, \bar{z}) = \varphi_\gamma(z)\overline{\varphi_\gamma(z)}P(z\bar{z}),$$

and writing $\mathcal{P}(D)[G] = 0$ leads to a simple differential equation for P.
The red parabola: idea of proof

- Set $\varphi_{\gamma}(z) := (1 - z)^\gamma$.
- $\mathcal{P}(\partial_z)[\varphi_{\gamma}] = A(p, q, \gamma)\varphi_{\gamma} + B(q, \gamma)\varphi_{\gamma-1} + C(p, \gamma)\varphi_{\gamma-2}$, with A, B and C involving monomials in p, q, in addition to quadratic polynomials in γ.
- $A + B + C \equiv 0$.
- The equations, $A = C = 0$, exactly correspond to (p, q) on the red parabola, and directly yield its parameterization in terms of γ.
- If $F = \varphi_{\gamma}$, then we seek G as

$$G(z, \bar{z}) = \varphi_{\gamma}(z)\overline{\varphi_{\gamma}(z)}P(z\bar{z}),$$

and writing $\mathcal{P}(D)[G] = 0$ leads to a simple differential equation for P.
The red parabola: idea of proof

- Set $\varphi_\gamma(z) := (1 - z)^\gamma$:

- $\mathcal{P}(\partial_z)[\varphi_\gamma] = A(p, q, \gamma)\varphi_\gamma + B(q, \gamma)\varphi_{\gamma-1} + C(p, \gamma)\varphi_{\gamma-2}$, with A, B and C involving monomials in p, q, in addition to quadratic polynomials in γ.

- $A + B + C \equiv 0$.

- The equations, $A = C = 0$, exactly correspond to (p, q) on the red parabola, and directly yield its parameterization in terms of γ.

- If $F = \varphi_\gamma$, then we seek G as

$$G(z, \bar{z}) = \varphi_\gamma(z)\varphi_\gamma(\bar{z})P(z\bar{z}),$$

and writing $\mathcal{P}(D)[G] = 0$ leads to a simple differential equation for P.
The red parabola: idea of proof

- Set $\varphi_\gamma(z) := (1 - z)^\gamma$:

- $\mathcal{P}(\partial_z)[\varphi_\gamma] = A(p, q, \gamma)\varphi_\gamma + B(q, \gamma)\varphi_{\gamma-1} + C(p, \gamma)\varphi_{\gamma-2}$, with A, B and C involving monomials in p, q, in addition to quadratic polynomials in γ.

- $A + B + C \equiv 0$.

- The equations, $A = C = 0$, exactly correspond to (p, q) on the red parabola, and directly yield its parameterization in terms of γ.

- If $F = \varphi_\gamma$, then we seek G as

$$G(z, \bar{z}) = \varphi_\gamma(z)\overline{\varphi_\gamma(z)}P(z\bar{z}),$$

and writing $\mathcal{P}(D)[G] = 0$ leads to a simple differential equation for P.
When $q = 0$ and $p = 2$ Parseval identity allows us to rephrase the latter result as identities for the coefficients a_n where we have written

$$f(z) = z + \sum_{n \geq 2} a_n z^n.$$

$p = 2$, $p = 2$ occurs for $\kappa = 2, 6$ with $\gamma = 2, 1$ respectively and we obtain the remarkable identities:

- $\kappa = 2$: $\mathbb{E}(|a_n|^2) = n$.
- $\kappa = 6$: $\mathbb{E}(|a_n|^2) = 1$.
Coefficient problem

- When $q = 0$ and $p = 2$ Parseval identity allows us to rephrase the latter result as identities for the coefficients a_n where we have written

$$f(z) = z + \sum_{n \geq 2} a_n z^n.$$

- $p = 2, \ p = 2$ occurs for $\kappa = 2, 6$ with $\gamma = 2, 1$ respectively and we obtain the remarkable identities:
 - $\kappa = 2: \ \mathbb{E}(|a_n|^2) = n.$
 - $\kappa = 6: \ \mathbb{E}(|a_n|^2) = 1.$
Coefficient problem

- When $q = 0$ and $p = 2$ Parseval identity allows us to rephrase the latter result as identities for the coefficients a_n where we have written
 \[f(z) = z + \sum_{n \geq 2} a_n z^n. \]

- $p = 2$, $p = 2$ occurs for $\kappa = 2, 6$ with $\gamma = 2, 1$ respectively and we obtain the remarkable identities:
 - $\kappa = 2$: $\mathbb{E}(|a_n|^2) = n$.
 - $\kappa = 6$: $\mathbb{E}(|a_n|^2) = 1$.
When $q = 0$ and $p = 2$ Parseval identity allows us to rephrase the latter result as identities for the coefficients a_n where we have written

$$f(z) = z + \sum_{n \geq 2} a_n z^n.$$

$p = 2, p = 2$ occurs for $\kappa = 2, 6$ with $\gamma = 2, 1$ respectively and we obtain the remarkable identities:

- $\kappa = 2$: $\mathbb{E}(|a_n|^2) = n$.
- $\kappa = 6$: $\mathbb{E}(|a_n|^2) = 1$.